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Leveraging drought risk reduction 
for sustainable food, soil and 
climate via soil organic carbon 
sequestration
Toshichika Iizumi   * & Rota Wagai

Drought is a major risk in global agriculture. Building-up soil organic carbon (SOC) enhances soil 
fertility and efficient use of rainwater, which can increase drought tolerance in food production. SOC 
management demonstrates its benefit at various locations and is a promising means to achieve food 
security and climate mitigation at once. However, no global assessment of its potential and co-benefits 
gained from SOC enhancement has been presented. Here we evaluated the extent to which SOC 
build-up could reduce agricultural drought risk. Using statistical analysis of spatially-explicit global 
crop and soil datasets, we find that relatively small enhancement in topsoil (0–30 cm) organic carbon 
content (OCtop) could increase drought tolerance of the food production systems operating over 70% of 
the global harvested area (particularly drylands). By closing the gap between current and upper limit 
of tolerance levels through SOC addition of 4.87 GtC at the global scale, farmer’s economic output in 
drought years would increase by ~16%. This level of SOC increase has co-benefit of reducing global 
decadal mean temperature warming by 0.011 °C. Our findings highlight that progress towards multiple 
development goals can be leveraged by SOC enhancement in carbon (C)-poor soils in drier regions 
around the world.

Increasing the productivity and income of small farmers in developing world is a widely acknowledged means to 
achieve food security1. More than 570 million family farmers cultivate nearly 80% of global agricultural land and 
provide a dominant portion of food locally consumed2. Most of their lands are rainfed and susceptible to persis-
tent drought which is the most severe climatic disaster for global food production3. One drought event occurred 
in the 1983–2009 period decreased agricultural gross domestic production by 0.8% on a global average basis, 
with more severe damage in developing countries than in developed countries and in drier regions than in wetter 
regions4. Droughts have also contributed to recent rise in hunger5. Drought risk reduction is therefore crucial to 
ensure the progress towards the food security goal by 2030 (ref. 6).

Building up SOC helps to maintain soil moisture at levels that enable crops to withstand water deficit7–10 
because (i) soil organic matter (SOM) in which SOC acts as a backbone has enormous water holding capacity 
and (ii) SOM enhances the formation and stability of porous soil structure which ensures the adequate balance 
of moisture and aeration for plants and soil biota2. Environmental co-benefit of SOM includes the increase in 
biodiversity and nutrient storage as well as the reduction of soil erosion11. Various agricultural practices, such 
as the incorporation of manure, compost, crop residues and biochar into soil, conservation tillage, cover crop, 
mulching and agroforestry, have been implemented around the world to improve soil water holding capacity 
and fertility8–14. Higher crop yields in normal years15 and smaller yield losses in drought years8 are well-known 
benefits of these soil management.

Soil management also plays an important role for climate mitigation. Carbon sequestration potential of agri-
cultural SOC stock is well recognized11,16–20 since global soils contain two to three times more C than the atmos-
phere20, and a substantial portion (37%) of the global ice-free land is in use for agriculture21. Recently, the dual 
benefits of SOC enhancement for climate mitigation and food security are emphasized in the “4 per mil initia-
tive”22. Given the limitations of available C and nitrogen resources to achieve the annual increase of global soil C 
by 4 per mil23–25, it is imperative to identify the agricultural areas most suitable for additional SOC build-up in 
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terms of the economic and environmental benefits associated with SOC increase18. Here we show that higher SOC 
content is beneficial for drought risk reduction in global food production. We examined two benefits of the SOC 
enhancement: (i) agricultural economic output in drought year, which has implications for small farmer’s income 
and access to food, and (ii) climate mitigation. We assessed four major crops (maize, rice, wheat and soybean), 
which together accounts for two thirds of the world’s food calories.

Results
Geographical pattern of drought tolerance gaps.  Using the spatially-explicit global crop and soil data-
sets, we depict geographic pattern of drought tolerance gaps (DTgap) in landscape-level food production systems. 
The gap in each 0.5° grid cell is derived by comparing estimated current drought tolerance level and its attainable 
upper limit. For the crops, dry-year yields relative to normal yield (average yield in 1992–2008) are computed 
(the left panels of Supplementary Fig. S1). Their area-weighted average is used to represent the current drought 
tolerance level (the left lowest panel of Supplementary Fig. S1). The upper limit of drought tolerance is deter-
mined by identifying the areas of high dry-year yields within similar climate regime (the right lowest panel of 
Supplementary Fig. S1 and Supplementary Fig. S2a).

Our analysis shows clear regional variation in the estimated DTgap. The areas with relatively large gap (food 
production is susceptible to drought) appear over drylands, including the Mediterranean, south Africa, Australia, 
western American Midwest and central Asia (Fig. 1). In the areas with relatively high drought tolerance (DTgap 
is already small), the dry-year yield is only lower than the normal yield by ~10%. Such areas are distributed to 
eastern Asia, western Europe and eastern North America.

Reduction of drought tolerance gaps in response to SOC increase.  The influence of SOC level on 
DTgap is nonlinear and C-poor soils in drier parts of the world show higher sensitivity (Fig. 2). Small increase in 
SOC from nearly zero to 4–9 kgC m−2 substantially reduces DTgap in drier climate zones (the ratio between mean 
annual precipitation and potential evapotranspiration, P/PET <0.45). On the other hand, such effect diminishes 
under wetter climate. In the drier zones, average DTgap sharply drops down to 16–28% point with SOC increase 
(red lines in CCB-52 and CCB-83 of Fig. 2). The steep decline in DTgap in the drier areas is observed until the 
SOC content approaches 4–9 kgC m−2. However, further SOC increase only slightly reduces DTgap. The mildly 
wet climate zones (CCB-55 and CCB-86 of Fig. 2; 0.45 ≤ P/PET < 1.0) show the same but less-prominent trend 
compared to the drier zones. Furthermore, in C-rich soils (>10 kgC m−2), the SOC effect becomes uncertain for 
the mildly wet zones because data in C-rich areas is quite scarce. No reduction in DTgap is found in wetter climate 
zones (CCB-89 and CCB-58 of Fig. 2; 1.0 ≤ P/PET). In short, the SOC effect on drought risk reduction is detected 
over 70.3% of the global harvested area (29.1%, 14.9%, 13.3% and 13.0% for CCB-55, 52, 86 and 83, respectively) 
with greater importance of moisture regime than temperature one.

Irrigation effect is hardly distinguishable at the global scale (Supplementary Fig. S3a), although the role of 
irrigation in moderating drought impacts is known26,27. Rather it appears to increase average yield level in our 
analysis (Supplementary Fig. S3b,c), that is consistent with ref. 28 which explains the causes of yield gaps. The irri-
gation dataset used here29 reports irrigation-equipped areas but not the amount of irrigation water. It is often the 
case that in drought years water is not available or not economically accessible for farmers. This in part explains 
why the relationship between irrigation intensity and DTgap is scattered. Importantly, OCtop is only weakly corre-
lated with irrigation intensity (Pearson’s correlation coefficient is –0.106 with p-value of <0.001 estimated using 
two-tailed t-test; Supplementary Fig. S3d). Consequently, the risk that the SOC effect found here covaries with 
irrigation effect is low.

Figure 1.  Drought tolerance gaps (DTgap) for maize, rice, wheat and soybean production systems circa the year 
2000. DTgap is indicated as the difference between dry-year average yield (% to normal yield) and its maxima 
within the areas under similar climate regime. Gap in each grid cell is calculated as an area-weighted average 
across the crops and is displayed when the harvested area of the crops is greater than 1% of the grid-cell extent. 
Gray color indicates the areas with no yield data.
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Discussion
Our results have implications for climate mitigation and food security as well as soil fertility. Using the relation-
ships addressed here, we estimate that the amount of additional SOC stock required to close DTgap in global food 
production systems is 4.87 GtC (17.53 GtCO2 with the 90%-probability interval of 17.29–17.84 GtCO2). The 
contributions from the mildly wet (CCB-55; 2.28 GtC) and drier zones (CCB-52; 1.94 GtC) are larger than those 
from the wetter zones due to their high areal coverage (29.1% and 14.9% of the global harvested area for CCB-55 
and CCB-52, respectively; Fig. 2). Adequate SOC management may differ by climate zone and available labor, 
machinery, equipment and infrastructure. In warm regions where microbial degradation of relatively labile C 
(e.g., plant residue and manure) is rapid, application of chemically-recalcitrant C such as biochar is effective as 
long as its production and distribution system is available30,31. Other options, including the labile C addition, are 
more feasible in colder and drier environment where C degradation is slow. The corresponding CO2 removal from 
the atmosphere would avoid global decadal mean surface temperature warming of 0.011 °C, relative to preindus-
trial levels (1850–1900), with the uncertainty range of 0.008–0.014 °C mainly due to the variation among climate 
models. The estimated climate mitigation is small in absolute terms but not negligible to limit the warming to 
1.5 °C as global temperature has already increase by about 1 °C (ref. 32).

Our study highlights that, for all the regions examined here, closing DTgap always increases economic outputs 
from food production systems in drought years (Fig. 3a) and provides a guide to target the areas where SOC 

Figure 2.  The relationships between topsoil organic carbon content versus drought tolerance gap (DTgap) for 
different climate zones (upper small panels) and schematic illustrating the “gap-closing” simulation conducted 
in this study (lower large panel). Each panel indicates specific climate zone; upper and lower panel indicates 
warmer and cooler zone, respectively; left, middle and right panel indicates drier, mildly wet and wetter zone, 
respectively; and the climate zones are coded by centered climate bin (CCB; Supplementary Fig. S2a). The extent 
of harvested areas that locate within the climate zones accounts for 95% of the global harvested area of the crops. 
Red lines indicate the locally weighted scatterplot smoothing (LOWESS) curves derived using 100 bootstrap 
replications to represent average relationships and their uncertainty; blue crosses indicate the SOC targets and 
corresponding DTgap used in the “gap-closing” simulation; AH indicates the harvested area share by climate 
zone; and n indicates the sample size.
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enhancement is prioritized. Higher agricultural economic output would increase the income of small farmers 
and their access to food. In particular, relatively large increases in dry-year output are anticipated in Middle 
East and North Africa (a 16% increase relative to what would occur with the current DTgap), Eastern Europe and 
Central Asia (10%), Sub-Saharan Africa (9%) and Southeast Asia and Oceania (7%) (Fig. 3 and Supplementary 
Fig. S4). On the other hand, the regions expected to have the largest increase in SOC stock is Southeast Asia and 
Oceania (0.83 GtC or 26% of the current regional OCtop stock over the harvested area of the crops) followed by 
Latin America and Caribbean, North America and Eastern Europe and Central Asia (0.67 GtC each or 17%, 14% 
and 22%, respectively) (Fig. 3). Therefore, Middle East and North Africa and Southeast Asia and Oceania are the 
regions where SOC enhancement is particularly recommended for drought risk reduction. Sub-Saharan Africa 
and Eastern Europe and Central Asia follow these regions. Identification of the areas where SOC build-up has 
co-benefits for multiple development goals is critical due to the persistent challenges from nutrient source limi-
tation, nitrogen fertilizer cost, and the competing demands for crop residues among SOC enhancement, feeding 
and energy14,17,18,24. Our study reveals that SOC build-up targeting at C-poor soils in world’s drier regions is a lev-
erage to facilitate further progress towards multiple development goals in drought risk reduction, food security, 
climate mitigation and soil fertility, simultaneously.

Building up SOC may be more costly in drier regions than in wetter regions due to limited productivity 
and land cover, high susceptibility to soil erosion, low soil structural stability as well as high human pressure. 
However, with appropriate institutional arrangements, dryland holds high potential for SOC buildup through 
efficient water management by maximizing rainwater capture and soil water retention (e.g., rain harvesting, con-
servation tillage practices and selecting crops with high water use efficiency33,34.

A caveat is that our analysis is only relevant to the landscape scale. As indicated by the departures of many 
grid-cell DTgap values from the average relationships (Fig. 2), factors contributing to the variation in DTgap at a 
local scale are lacking in this study. Because yield time series data are crucial to calculate dry-year average yields 
and associated DTgap, the limited availability of high-resolution global, historical yield dataset hinders us con-
ducting a global analysis with the spatial resolutions at which local soil characteristics play a role in characterizing 
DTgap.

Methods
Food production system’s drought tolerance.  An indicator to represent the average tolerance of land-
scape-level food production systems to meteorological droughts circa the year 2000 was calculated using cli-
mate bin, growing-season precipitation and crop yields. The climate bins were defined by thermal and moisture 
regimes and used for climate zoning at the global scale. Maize, rice, wheat and soybean were considered. The 
calculation procedure consisting of three steps is described below.

Step1: meteorological droughts.  We addressed location-specific dry years during the 17 yr period cen-
tered on the year 2000 (1992–2008). Growing-season precipitation was computed for each crop, cropping season 
of a crop and year using the global crop calendars35 (the 0.5°-resolution and unfilled version) and global retro-
spective daily meteorological forcing dataset36,37 (0.5°). In the crop calendars, maize, rice and wheat have two 
cropping seasons (main/second for maize and rice and winter/spring for wheat), whereas soybean has one single 
season. For the crops with two cropping seasons, the calculated growing-season precipitation for the individual 
cropping seasons were averaged using the reported average production share by season in the 1990s (ref. 38) as the 
weights. Based on the calculated annual time series of growing-season precipitation of the crops, we selected the 
two driest years. The selected samples roughly correspond to a 10% of the sample size (n = 17) and represent years 
with meteorological drought more severe than the threshold for a 1-in-8.5 yr recurrence.

Figure 3.  Global increases in (a) drought-year average annual agricultural economic output from closing 
drought tolerance gaps (DTgap) and (b) additional SOC required to close DTgap. Numbers in the right panel 
indicate the additional SOC in percent relative to the current regional topsoil organic carbon stock over the 
harvested area of the crops.
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Step 2: dry-year average yields.  Annual yields of the individual crops in the selected dry years were aver-
aged across the years and divided by the 17 yr average yield for the normalization (the left panels of Supplementary 
Fig. S1). Their area-weighted average across the crops was used as an indicator representing average food pro-
duction level under meteorological drought conditions. Yield data of the crops for the period 1992–2008 were 
obtained from the Global Dataset of Historical Yields version 1.2 (0.5°; refs. 39–42; The details on the difference 
across versions are available in Table 1 of ref. 42).

Although the dry-year average yields used here represented meteorological droughts, the comparisons with 
the estimates of drought-induced yield losses in rainfed condition4 which represent agricultural droughts defined 
by yield reduction showed that the lower dry-year average yields accompanied the more severe drought-induced 
yield losses (Supplementary Fig. S6). The correlation values were low (0.134–0.293) in absolute terms but sta-
tistically significant (p < 0.001) thanks to the large sample size. This indicates that the null hypothesis that the 
correlation is zero was rejected; and that a positive linear relationship between the dry-year average yields and 
the drought-induced yield loss estimates exists. Therefore, the dry-year average yields captured to some degree 
the major characteristics of the estimated agricultural droughts. The drought-induced yield losses of ref. 4 mainly 
considered rainfed conditions, whereas both rainfed and irrigated conditions were considered in this study. This 
may in part explain their discrepancies. A comparison with other indicators of agricultural droughts would be 
useful, but such dataset is not available in our knowledge.

Step 3: gap between current drought tolerance level and its upper limit.  Variations in the dry-year 
average yield across locations within similar climatic regime must be attributed to differences in management, 
technology and environmental factors other than climate (e.g., soil). An approach used in ref. 28 offers a good 
analogue. For each climate bin, we selected the highest dry-year average yield value and deemed as the attaina-
ble upper limit of drought tolerance in a given climatic regime. We used climate bins shown in Supplementary 
Fig. S17 of ref. 43 which were derived based on average annual growing degree days (GDD) with the base temper-
ature of 0 °C and average aridity index (that is, annual potential evapotranspiration of reference crop divided by 
annual precipitation) in 1996–2005 (Supplementary Fig. S2a). By comparing the current drought tolerance level 
(DTc (% to average yield); the left lowest panels of Supplementary Fig. S1) and its attainable upper limit (DTu (% to 
average yield); the right lowest panels of Supplementary Fig. S1), we derived their gap (referred to as the drought 
tolerance gap, DTgap = DTu − DTc (% point); Fig. 1).

There was a concern that DTgap values were largely different between the individual crops and area-weighted 
average due to effects of inter-crop differences in harvested area extent and yield sensitivity to precipitation 
deficits. However, the comparisons showed that DTgap of the individual crops and their area-weighted average 
resembled each other (Supplementary Fig. S5). Therefore, we adopted area-weighted average DTgap for the latter 
analysis.

Soil organic carbon content.  The topsoil (0–30 cm) organic carbon contents (OCtop) circa the year 2000 
were obtained from the regridded Harmonize World Soil Database version 1.2 (ref. 44). The original data at the 
30-sec arc resolution was initially compiled in FAO44 and then aggregated the data into the 0.05° resolution45,46. 
We further aggregated the data into the 0.5° resolution. In the aggregation, we first spatially interpolated soil 
map at the 0.05° resolution into the 5-min arc (0.083°) resolution using the inverse distance weighted averaging 
method to have the common resolution with the harvested area map in 2000 (ref. 47). The interpolated data were 
aggregated to represent average level of OCtop over the harvested areas of the crops located within a 0.5° grid cell 
(Supplementary Fig. S7).

Irrigation intensity.  The extent of irrigated and rainfed areas for the individual crops were obtained from 
the Monthly Irrigated and Rainfed Crop Areas around the year 2000 dataset (MIRCA2000; ref. 29). The data at the 
5-min arc resolution were aggregated into the 0.5° resolution. Then the irrigation intensity (that is, the fraction of 
irrigated area to harvested area) was computed crop by crop and their area-weighted average across the crops was 
used for the analysis (Supplementary Fig. S8).

Average relationships between SOC and drought tolerance gap.  A nonlinear relationship between 
OCtop and DTgap was addressed for each of the climate zones using a locally weighted scatterplot smoothing 
(LOWESS) curve. The LOWESS method48 is powerful in depicting an empirical relationship between two vari-
ables shown in a scatter plot. We also used the bootstrap resampling technique with replacement and generated 
100 bootstrap replications. The LOWESS curve was estimated for each replication using the statistical package R 
(lowess function with f = 0.9; R version 3.5.0; ref. 49) to account for the uncertainty in estimated LOWESS curves 
associated with data. The estimated LOWESS curves were used as the representation of average relationship and 
uncertainty when deriving anticipated DTgap level from the current OCtop level. The average inflection point 
across the LOWESS curves (blue crosses of Fig. 2) was visually identified for each of the climate zones and used 
for the “gap-closing” simulation described below.

Global SOC stock increase from closing drought tolerance gaps.  To estimate the amount of addi-
tional SOC required to close DTgap at the global scale, we set the SOC targets for each of the four climate zones 
based on the relationships addressed earlier (blue crosses in CCB-52, 55, 83 and 86 of Fig. 2). The average inflec-
tion point across the LOWESS curves was visually determined to be the SOC target (and the corresponding 
DTgap). Ths SOC targets indicate a climate-zone-specific hypothetical SOC level above which additional SOC 
does not help reduce DTgap. The remaining climate zones (CCB-58 and 89) were not included in the estimation 
and thus no SOC target was set because it is unlikely that SOC increases lead to closing DTgap in these areas. The 
combinations of the SOC target and corresponding DTgap used here are shown in Supplementary Table S1.
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The main procedure of our “gap-closing” simulation is shown in the larger panel of Fig. 2. We selected one 
location (grid cell) that locates within either of the climate zones (CCB-52, 55, 83 or 86) and examined whether 
DTgap for that location is above the anticipated level according to the current SOC level (indicated by a red line 
in the smaller panels of Fig. 2). If not (e.g., B in Fig. 2), the current drought tolerance level is already higher than 
the anticipated level and therefore no simulation was conducted for that location because no further reduction in 
drought risk is expected by SOC enhancement. If yes (e.g., A in Fig. 2), we compared the two data points, A’ {the 
current SOC level, the anticipated DTgap} versus the target point X {the SOC target, the corresponding DTgap}, 
and computed SOC increase and DTgap reduction between A’ and X (ΔSOC and ΔDTgap in Fig. 2, respectively). 
The average inflection point across the LOWESS curves described earlier was used as the target point. We com-
puted ΔSOC and ΔDTgap values 100 times using different bootstrap replications (Fig. 2). LOWESS curves could 
vary by data samples used. The 100 different curves were used to account for the uncertainty in LOWESS curve 
associated with data. No simulation was conducted when the current SOC level is higher than the SOC target 
(C in Fig. 2) because it is uncertain whether SOC increases in C-rich areas (>9 kgC m−2) lead to further DTgap 
reduction (Fig. 2). These computations were repeated until all grid cells within the climate zones were completed.

Contribution to average economic output in drought years.  The calculated ΔDTgap (and ΔSOC) 
values mentioned above were used to estimate the increases in dry-year average agricultural economic output by 
closing DTgap. For this calculation, grid-cell estimates of ΔDTgap were first aggregated into a country scale. The 
grid-cell dry-year average yield when DTgap is closed, Ygc (t ha−1), was computed:

Δ= − ×( )Y Y DT Y/100 , (1)i j i j j i jgc, , , gap, ,

where the subscript i and j indicates crop and grid cell, respectively; Y indicates the dry-year average yield under 
the current DTgap (% to normal yield); ΔDTgap indicates the reduced DTgap along with SOC increase (% to normal 
yield); and Y  indicates the normal yield (17 yr average yield; t ha−1). We assumed that reduced DTgap (ΔDTgap) is 
common across the crops. Because normal yields are different in absolute terms across the crops, a common 
ΔDTgap value gives different increases in dry-year average yield in absolute terms across the crops.

The country dry-year average annual economic output from food production systems when DTgap is closed, 
Ogc (USD), was computed:
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where the subscript k indicates country; A indicates the harvested area in 2000 (ha) (ref. 47); J indicates the num-
ber of grid cells within a country; and P indicates the country average producer price of a crop for the period 
1998–2002 (USD t−1). The country annual producer prices were obtained from FAO statistical database50. As 
consumer prices are more strongly affected by demand-supply balance, oil prices and others than producer prices, 
we used producer prices.

Additionally, the country dry-year average and normal-year economic outputs from food production systems, 
both under the current drought tolerance gaps, Og and O (USD), were calculated:
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For visualization purpose, these values were normalized using the normal-year economic output as the base 
(Ogc,k/Ok and Og,k/Ok; Supplementary Fig. S4). We also calculated increases in country dry-year average annual 
economic output from closing DTgap relative to what would occur with the current DTgap (Ogc,k/Og,k). The calcu-
lated country estimates of dry-year economic output increase (and SOC stock increase) from closing DTgap were 
aggregated into nine regions using the classification of regions shown in Supplementary Fig. S9. The regional 
aggregation of Ogc,k/Ok and Og,k/Ok was indicated by yellow bars and green bars of Fig. 3a, respectively. The 
regional SOC stock increase computed based on ΔSOC is shown in Fig. 3b.

Contribution to climate mitigation.  The estimated amount of additional SOC stock over the global crop-
land topsoil in GtC (aggregated from ΔSOC) was first converted into a value in GtCO2 and further converted into 
a global decadal mean surface temperature change relative to 1850–1900. A liner relationship between cumulative 
total anthropogenic CO2 emission from 1870 and global decadal mean surface temperature change relative to 
1861–1880 is found in Figure SPM.10 of Intergovernmental Panel on Climate Change (IPCC) Working Group I 
Fifth Assessment Report51. We recalculated this relationship using the bias-corrected daily mean 2-m air temper-
ature data of eight atmosphere-ocean coupled general circulation models (GCMs)37,52 used in the Coupled Model 
Intercomparison Project phase 5 (CMIP5)53 (Supplementary Table S2). Cumulative CO2 emission was calcu-
lated using the reported emission estimates from fossil-fuel burning, cement manufacture and gas flaring for the 
period 1870–2009 (ref. 54) and Representative Concentration Pathways (RCPs) for the period 2010–2100 (ref. 55).  
As a result, we obtained the warming rate of 6.376 × 10−4 °C (GtCO2)−1 in global decadal mean surface temper-
ature relative to 1850–1900 with the 90%-probability interval from 4.482 × 10−4 to 7.898 × 10−4 °C (GtCO2)−1 
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associated with use of different GCMs (Supplementary Fig. S10). This modification was to shift the reference 
time interval from 1861–1880 used in ref. 43 to 1850–1900 because the latter is utilized in the recent IPCC special 
report32 and enables us deriving a more robust estimate of global temperature in preindustrial levels. The same 
approach is found in ref. 43.

Data availability
The data that support the findings of this study are available in Supplementary Information.
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